Categories: 23 DSA Patterns

Generate Parenthesis | Intuition + Code | Recursion Tree | Backtracking | Java

Problem Statement:

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Example 1: Input: n = 3 Output: [“((()))”,”(()())”,”(())()”,”()(())”,”()()()”]
Example 2: Input: n = 1 Output: [“()”]

Solution:

This problem can be solved using the concept of backtracking, Let’s see how to approach it.

Recursion Tree (Backtracking)

We have to write a function generate([], left, right, str=””, n)

[] -> Stores the result

left -> represents the opening bracket

right -> represents the closing bracket

str -> Stores each bracket in each iteration

n -> Input size

Step 1: Base condition of the recursion if(str. length() == 2*n) add balanced parenthesis string in result = [] and return.

Taking 2*n because for n = 1, str = “()” of size 2, n = 2, str = “(())” of size 4.

Step 2:

check condition (left < n) if it’s true then call function generate([], left + 1, right, str+”(“, n)

Step 3:

check condition (right < left) if it’s true then call function generate([], left, right + 1, str+”)”, n)

Step 4:

In the end, it will give the final result, which contains all combinations of balanced parenthesis.

All the above steps (1, 2, and 3) will repeat until they create all balanced parenthesis combinations.

Note: Try yourself, then look into the code.

class Solution {
    public List<String> generateParenthesis(int n) {
        
        List<String> res = new ArrayList<String>();
        dfs(res, 0, 0, "", n);
        return res;
    }

    public void dfs(List<String> res, int left, int right, String s, int n) {

        if(s.length() == n*2) {

            res.add(s);
            return;
        }

        if(left < n) {

            dfs(res, left + 1, right, s + "(", n);
        }

        if(right < left) {

            dfs(res, left, right+1, s + ")", n);
        }
    }
}

Time Complexity: O(2^n) because of the recursive tree.

Space Complexity: O(1) because there is no extra space taking, only one List<String> which is required as output.

I hope you understand the approach to solving this problem.

Peace ✌️

Share
Published by
Hassan Raza

Recent Posts

Estimate π Using Monte Carlo Method

The formula for the area of a circle is given by πr². Use the Monte…

5 days ago

Longest Substring with K Distinct Characters

Given an integer k and a string s, write a function to determine the length…

6 days ago

Staircase Climbing Ways

There is a staircase with N steps, and you can ascend either 1 step or…

2 weeks ago

Autocomplete System Implementation

Build an autocomplete system that, given a query string s and a set of possible…

2 weeks ago

Job Scheduler Implementation

Design a job scheduler that accepts a function f and an integer n. The scheduler…

2 weeks ago

Largest Sum of Non-Adjacent Numbers

Problem Statement (Asked By Airbnb) Given a list of integers, write a function to compute…

2 weeks ago